Skip to main content
Log in

Elastic, electronic and thermodynamic properties of fluoro-perovskite KZnF3 via first-principles calculations

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The elastic, electronic and thermodynamic properties of fluoro-perovskite KZnF3 have been calculated using the full-potential linearized augmented plane wave (FP-LAPW) method. The exchange-correlation potential is treated with the generalized gradient approximation of Perdew-Burke-Ernzerhof (GGA-PBE). Also, we have used the Engel and Vosko GGA formalism (GGA-EV) to improve the electronic band structure calculations. The calculated structural properties are in good agreement with available experimental and theoretical data. The elastic constants C ij are calculated using the total energy variation with strain technique. The shear modulus, Young’s modulus, Poisson’s ratio and the Lamé coefficients for polycrystalline KZnF3 aggregates are estimated in the framework of the Voigt-Reuss-Hill approximations. The ductility behavior of this compound is interpreted via the calculated elastic constants C ij . Electronic and bonding properties are discussed from the calculations of band structure, density of states and electron charge density. The thermodynamic properties are predicted through the quasi-harmonic Debye model, in which the lattice vibrations are taken into account. The variation of bulk modulus, lattice constant, heat capacities and the Debye temperature with pressure and temperature are successfully obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.H. Cooke, D.A. Jones, J.F.A. Silva, M.R. Weils, J. Phys. C. Solid State Phys. 8, 4083 (1975)

    Article  ADS  Google Scholar 

  2. R.A. Hcaton, C. Lin, Phys. Rev. B 25, 3538 (1982)

    Article  ADS  Google Scholar 

  3. M. Eibschutz, H.J. Guggenheim, Solid State Commun. 6, 737 (1968)

    Article  ADS  Google Scholar 

  4. D.K. Sardar, W.A. Sibley, R. Aicala, J. Lumin. 27, 401 (1982)

    Article  Google Scholar 

  5. A. Gektin, I. Krasovitskaya, N. Shiran, J. Lumin. 72, 664 (1997)

    Article  Google Scholar 

  6. M. Mortier, I. Gesland, M. Rousseau, Solid State Commun. 89, 369 (1994)

    Article  ADS  Google Scholar 

  7. S. Somiya, S. Hirano, M. Yoshimura, K. Yanagisawa, J. Mater. Sci. 16, 813 (1981)

    Article  ADS  Google Scholar 

  8. G. Dominiak-Dzik, I. Sokolska, S. Golab, M. Baluka, J. Alloys Compd. 300, 254 (2000)

    Article  Google Scholar 

  9. C. Zhao, S. Feng, Z. Chao, C. Shi, R. Xu, J. Ni, Chem. Commun. 14, 1641 (1996)

    Article  Google Scholar 

  10. H. Li, Z. Jia, C. Shi, Chem. Lett. 9, 1106 (2000)

    Article  Google Scholar 

  11. J. Lee, Q. Zhang, F. Saito, Chem. Lett. 30, 700 (2001)

    Article  Google Scholar 

  12. R. Hua, Z. Jia, C. Shi, Mater. Res. Bull. 42, 249 (2007)

    Article  Google Scholar 

  13. P. Parhi, V. Manivannan, Mater. Lett. 62, 3468 (2008)

    Article  Google Scholar 

  14. B. Huang, J.-M. Hong, X.-T. Chen, Z. Yu, X.-Z. You, Mater. Lett. 59, 430 (2005)

    Article  Google Scholar 

  15. V. Navivannan, P. Parhi, J.W. Kramer, Bull. Mater. Sci. 31, 987 (2008)

    Article  Google Scholar 

  16. L.Q. Jiang, J.K. Guo, H.B. Liu, M. Zhou, X. Zhou, P. Wu, C.H. Li, J. Phys. Chem. Solids 67, 1531 (2006)

    Article  ADS  Google Scholar 

  17. R.L. Moreira, A. Dias, J. Phys. Chem. Solids 68, 1617 (2007)

    Article  ADS  Google Scholar 

  18. A.S. Verma, V.K. Jindal, J. Alloys Compd. 485, 514 (2009)

    Article  Google Scholar 

  19. V. Luana, A. Costales, A. Martin Pendbs, M. Florez, M. Garcia Fernandez, Solid State Commun. 104, 47 (1997)

    Article  ADS  Google Scholar 

  20. M. Kitamura, S. Muramatsu, Phys. Rev. B 41, 1158 (1990)

    Article  ADS  Google Scholar 

  21. O. Muller, R. Roy, The Major Ternary Structural Families (Springer, New York, 1974)

    Google Scholar 

  22. C. Ridou, M. Rousseau, J. Bouillot, C. Vettier, J. Phys. E 17, 1001 (1984)

    Google Scholar 

  23. A.M. Hofmeister, Geophys. Res. 96, 16181 (1991)

    Article  ADS  Google Scholar 

  24. L.A. Kappers, L.E. Halliburton, J. Phys. C, Solid State Phys. 7, 589 (1974)

    Article  ADS  Google Scholar 

  25. N. Tyagi, P. Senthil Kumar, R. Nagarajan, Chem. Phys. Lett. 494, 284 (2010)

    Article  ADS  Google Scholar 

  26. J.Y. Gesland, M. Binois, J. Nouet, C.R. Acad. Sci. Paris B 275, 551 (1972)

    Google Scholar 

  27. R. Navarro, R. Burriel, J. Bartolomé, D. Gonzalez, J. Chem. 18, 1135 (1986)

    Article  Google Scholar 

  28. G.K.H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt, L. Nordström, Phys. Rev. B 64, 195134 (2001)

    Article  ADS  Google Scholar 

  29. K. Schwarz, P. Blaha, G.K.H. Madsen, Comput. Phys. Commun. 147, 71 (2002)

    Article  ADS  MATH  Google Scholar 

  30. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, Wien2k, An Agmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology, Austria (2001)

  31. J.P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  32. E. Engel, S.H. Vosko, Phys. Rev. B 47, 13164 (1993)

    Article  ADS  Google Scholar 

  33. G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74(2), 601 (2002)

    Article  ADS  Google Scholar 

  34. S. Fahy, K.J. Chang, S.G. Louis, M.L. Cohen, Phys. Rev. B 35, 7840 (1989)

    Google Scholar 

  35. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  36. M.A. Blanco, E. Francisco, V. Luaňa, Comput. Phys. Commun. 185, 57 (2004)

    Article  ADS  Google Scholar 

  37. M.A. Blanco, A.M. Pendás, E. Francisco, J.M. Recio, R. Franco, J. Mol. Struct., Theochem 368, 245 (1996)

    Article  Google Scholar 

  38. M. Florez, J.M. Recio, E. Francisco, M.A. Blanco, A.M. Pendás, Phys. Rev. B 66, 144112 (2002)

    Article  ADS  Google Scholar 

  39. E. Francisco, M.A. Blanco, G. Sunjurjo, Phys. Rev. B 63, 049107 (2001)

    Article  Google Scholar 

  40. F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. M.J. Mehl, Phys. Rev. B 47, 2493 (1993)

    Article  ADS  Google Scholar 

  42. R. Khenata, A. Bouhemadou, A.H. Reshak, R. Ahmed, B. Bouhafs, D. Rached, Y. Al Douri, M. Rérat, Phys. Rev. B 75, 195131 (2007)

    Article  ADS  Google Scholar 

  43. V. Kanchana, G. Waitheeswaran, A. Svane, A. Delin, J. Phys., Condens. Matter 18, 9615 (2006)

    Article  ADS  Google Scholar 

  44. K.D. Reddy, P. Kistaiah, L. Iyengar, J. Less-Common Met. 92, 81 (1983)

    Article  Google Scholar 

  45. G. Vaitheeswaran, V. Kanchana, R.S. Kumar, A.L. Cornelius, M.F. Nicol, A. Svane, A. Delin, B. Johansson, Phys. Rev. B 76, 014107 (2007)

    Article  ADS  Google Scholar 

  46. G. Vaitheeswaran, V. Kanchana, R.S. Kumar, A.L. Cornelius, M.F. Nicol, A. Svane, N.E. Christensen, B. Johansson, Phys. Rev. B 81, 075105 (2010)

    Article  ADS  Google Scholar 

  47. J. Wang, S. Yip, Phys. Rev. Lett. 71, 4182 (1993)

    Article  ADS  Google Scholar 

  48. V. Tvergaard, J.W. Hutshinson, J. Am. Ceram. Soc. 71, 157 (1988)

    Article  ADS  Google Scholar 

  49. B.B. Karki, L. Stixrude, S.J. Clark, M.C. Warren, G.J. Ackland, J. Crain, Am. Mineral. 82, 51 (1997)

    Google Scholar 

  50. R. Hill, Proc. Phys. Soc. Lond. A 65, 349 (1952)

    Article  ADS  Google Scholar 

  51. W. Voigt, Lehrbuch der Kristallphysik (Teubner, Leipzig, 1928)

    MATH  Google Scholar 

  52. A. Reuss, A. Angew, Math. Phys. 9, 49 (1929)

    MATH  Google Scholar 

  53. J. Haines, J.M. Leger, G. Bocquillon, Annu. Rev. Mater. Res. 31, 1 (2001)

    Article  ADS  Google Scholar 

  54. S.F. Pugh, Philos. Mag. 45, 823 (1954)

    Google Scholar 

  55. I.N. Frantsevich, F.F. Voronov, S.A. Bokuta, in Elastic Constants and Elastic Moduli of Metals and Insulators Handbook, ed. by I.N. Frantsevich (Naukuva Dumka, Kiev, 1983)

    Google Scholar 

  56. D.G. Pettifor, Mater. Sci. Technol. 8, 345 (1992)

    Article  Google Scholar 

  57. V. Kanchana, G. Vaitheeswaran, Y. Ma, Y. Xie, A. Svane, O. Eriksson, Phys. Rev. B 80, 125108 (2009)

    Article  ADS  Google Scholar 

  58. M. Rajagopalan, S. Praveen Kumar, R. Anuthama, Physica B 405, 1817 (2010)

    Article  ADS  Google Scholar 

  59. L.F. Mattheiss, Phys. Rev. B 2, 3918 (1970)

    Article  ADS  Google Scholar 

  60. L.F. Mattheiss, Phys. Rev. 181, 987 (1969)

    Article  ADS  Google Scholar 

  61. M. Sahnoun, M. Zbiri, C. Daul, R. Khenata, H. Baltache, M. Driz, Mater. Chem. Phys. 91, 185 (2005)

    Article  Google Scholar 

  62. Z.F. Hou, Physica B 403, 2624 (2008)

    Article  ADS  Google Scholar 

  63. S. Fahy, K.J. Chang, S.G. Louis, M.L. Cohen, Phys. Rev. B 35, 5856 (1987)

    Article  ADS  Google Scholar 

  64. A.T. Petit, P.L. Dulong, Ann. Chim. Phys. 10, 395 (1819)

    Google Scholar 

  65. P. Debye, Ann. Phys. 39, 789 (1912)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Khenata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seddik, T., Khenata, R., Merabiha, O. et al. Elastic, electronic and thermodynamic properties of fluoro-perovskite KZnF3 via first-principles calculations. Appl. Phys. A 106, 645–653 (2012). https://doi.org/10.1007/s00339-011-6643-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6643-2

Keywords

Navigation